

Finland's Approach to Educational Technology: Access for All

Jennifer Bond* Joseph Sencibaugh*

School of Education, Graduate Department of Education, Webster University, United States of America*

Abstract: Despite Finland's strong commitment to educational equity, regional imbalances in technological access raise questions about how the education system is meeting the needs of all students, regardless of their geographical location. This research aims to explore the extent and impact of these disparities, identify the underlying factors contributing to the unequal distribution of educational technology, and propose solutions that can ensure all students, both urban and rural, have equal opportunities to thrive in a digital learning environment.

Keywords: Finland, Educational Technology, Educational Equity.

INTRODUCTION

Finland is widely recognized for its high-quality education system, but a growing concern is the disparity in access to technology between rural and urban areas. While urban schools benefit from better access to modern digital tools, high-speed internet, and more opportunities for teachers to be trained in educational technology, rural schools often need more infrastructures, have limited internet connectivity, and have a shortage of resources and technology training. Disparities such as these prevent students in rural areas from fully participating in digital learning, which could cause setbacks in their participation in a digital global society.

Social Implications

In an increasingly digital world, the ability to access technology is a critical component of social inclusion and participation. Students in rural areas, who often face limited access to modern digital tools and high-speed internet, may struggle to develop essential digital literacy skills that are vital for their academic success and future employment prospects (Mäkinen et al., 2020). These disparities may lead to social marginalization, as students from rural areas might not have the same opportunities to engage with digital learning materials, collaborate on online platforms, or participate in global conversations. This inequality risks reinforcing existing social divides and perpetuating cycles of disadvantage, as students in urban areas have access to resources that equip them with skills essential for navigating an increasingly digital world (Hämäläinen et al., 2020).

Digital literacy is increasingly a prerequisite for many job opportunities. Without access to these resources, rural students might face greater challenges in entering higher education or securing employment in a technology-driven environment. This exacerbates the social inequality between urban and rural communities, potentially limiting opportunities for future generations (Tella et al., 2021).

Political Implications

The political implications of the digital divide in Finland's educational system are also significant. Finland's education policy emphasizes equity and inclusion, with the state playing an active role in ensuring that all students, regardless of background, receive high-quality education (Sahlberg, 2011).

However, the existence of regional imbalances in access to educational technology is causing policymakers to face a complex challenge in ensuring that resources are distributed equitably to remote areas that may be difficult to reach or have lower populations.

According to the Organisation for Economic Co-operation and Development (2017), the Finnish government has initiated several efforts to promote digital education, including the establishment of digital education strategies and funding for broadband infrastructure. The implementation of these policies is at times uneven across urban and rural areas which could indicate a gap in political desire or capacity to address these disparities adequately. The allocation of resources, especially in rural areas, remains a critical issue. Without targeted investments in technological infrastructure and teacher training, rural schools are unlikely to have the same opportunities to integrate digital tools into their teaching practices. Gaps such as these undermine Finland's political commitment to providing equal educational opportunities for all students.

The digital divide could have broader political consequences. As the gap between urban and rural students widens, rural communities may become increasingly dissatisfied with government policies perceived as disproportionately benefiting urban areas. This could lead to political polarization and tensions between urban and rural populations, which would disrupt the cohesion that is central to Finland's identity as a unified, equitable society.

Economic Implications

From an economic perspective, the disparities in access to educational technology also have long-term implications for Finland's overall economic growth. The ability of students to develop digital skills is essential for their future employability in an economy that is increasingly finding value in technological literacy. Students from rural schools, who may lack access to modern educational tools, are at a distinct disadvantage when it comes to competing for high-paying jobs that require advanced digital competencies. The resulting skills gap between urban and rural students could lead to labor market imbalances, with rural communities potentially suffering from lower levels of economic development and a reduced workforce capacity in digital industries (Mäkinen et al., 2020).

If Finland wants to remain globally competitive economically, it will need to depend on a workforce that is equipped with digital skills. Without change, the unequal distribution of digital education across regions could threaten the country's status as a global leader in technological development. Ensuring that all students, regardless of their location, have equal opportunities to develop digital literacy is not only an educational issue but an economic one. Failing to address these disparities could limit Finland's ability to adapt to future technological challenges, impacting its economy's long-term growth and innovation potential (Tella et al., 2021).

These economic implications extend to the government's budget. The allocation of public funds for educational technology and broadband infrastructure is necessary to address these regional disparities. However, funding alone is insufficient. Investments should be strategically targeted to areas where the digital divide is most pronounced, ensuring that rural schools have the resources necessary to provide students with the tools they need to succeed in an increasingly digital economy (Hämäläinen et al., 2020).

In Finland, gaps in digital access between rural and urban areas pose social, political, and economic challenges that threaten the country's commitment to educational equity. Without change, these disparities risk reinforcing existing social inequalities, hindering economic development, and undermining Finland's political promises of inclusivity and equal opportunity. Finland will need to continue to prioritize investments in digital infrastructure, teacher training, and targeted education policies. Steps such as these will ensure that all students, both urban and rural, have equal opportunities to thrive in a digital learning environment.

Challenges in Rural vs. Urban Technology Access

In Finland, urban schools tend to have more advanced infrastructures, including high-speed internet, modern hardware, and digital tools, which assist educators with integrating technology into their classrooms. Urban areas are generally better equipped to incorporate digital learning due to their proximity to large cities and the availability of resources and investment in educational technology (Mäkinen et al., 2020). In contrast, rural schools often face technological challenges, including limited broadband access, outdated devices, and a lack of resources for maintaining and updating infrastructure (Hämäläinen et al., 2020).

Another barrier to technological access in rural areas within Finland is the availability and quality of internet services. Rural regions in Finland often suffer from slower internet speeds and inconsistent connectivity, which can severely hinder the ability of students to participate in digital learning (Tella et al., 2021). Limited broadband access not only affects online educational platforms but also restricts the ability of students and teachers to utilize resources such as streaming video lessons, virtual classrooms, and cloud-based tools, which are integral to modern education (Hämäläinen et al., 2020).

Rural schools may also face difficulties in attracting and retaining educators with the necessary skills to integrate digital tools into their teaching. Teachers in rural schools may not have access to the same level of professional development in educational technology as their urban counterparts, limiting their ability to effectively incorporate digital resources into their curricula (Sahlberg, 2011). This lack of digital literacy among teachers further exacerbates the divide between rural and urban schools, as students in rural areas may not receive the same level of digital learning experiences.

Another significant factor that influences access to digital learning opportunities in Finland is the country's frigid seasonal temperatures. In remote northern areas, where winter temperatures can drop below -30°C, the severe weather conditions often complicate the delivery of digital literacy programs. Many rural communities rely on local libraries and community centers for access to computers and internet services, but during the coldest months, transportation becomes difficult and services may be limited or closed. As a result, individuals in these areas may face prolonged periods without access to digital resources, leading to disparities in digital skills development between urban and rural populations.

The cold temperatures can also discourage people from attending face-to-face digital literacy workshops or training sessions. Those impacted the greatest by this include the elderly and those with limited mobility. This creates barriers for those already at a disadvantage in terms of technology use, exacerbating the digital divide in Finland (Hämäläinen, 2020). The government's reliance on centralized learning hubs, which are often located in larger cities or regional centers, further limits access for those in remote areas, hindering nationwide digital literacy initiatives.

Engagement and Motivation

Limited technological access in combination with the long Finnish winters can also affect engagement levels in digital literacy programs. The harsh weather can lead to seasonal affective disorder (SAD), a condition that can decrease motivation and overall well-being, thus affecting participation in educational activities (Aaltonen Länsisalmi, 2021). People who experience SAD may be less inclined to engage in digital literacy learning, especially when the programs require self-directed learning or extended screen time, which can be perceived as mentally taxing in cold, isolating conditions.

In response, Finland has increasingly relied on digital platforms to deliver learning content, a strategy that was accelerated during the COVID-19 pandemic. While online programs offer flexibility and can reach a wider audience, they also require stable internet access and reliable digital devices, which may not always be available in colder, rural regions. The reliance on technology to facilitate digital literacy, while practical, has underscored the importance of addressing broader infrastructure and socio-economic issues (Hämäläinen, 2020).

Socio-Economic Disparities

The economic disparities amplified by Finland's cold climate further complicate the country's digital literacy efforts. Families in rural areas or lower-income households often face challenges related to both affordability and physical infrastructure, such as high-speed internet or suitable devices. In colder regions, heating costs are a significant expense, which can reduce the funds available for digital devices and internet services. These economic barriers are a key factor in limiting equitable access to digital literacy programs, as families may choose to prioritize basic needs over educational tools.

Finland's vast geographical spread means that even though the country has one of the highest rates of internet access in Europe, not all areas have equal access to digital services. In northern regions, where the frigid temperatures and sparse populations create logistical challenges, infrastructure investment is often less prioritized, contributing to a persistent gap in digital skills between urban and rural populations (Aaltonen & Länsisalmi, 2021). The lower population density in rural areas often means that there is less political and economic incentive to invest in upgrading educational technology. This leads to further resource disparities and a growing gap in the ability of rural students to engage with the digital curriculum (Mäkinen et al., 2020).

While Finland has made important strides in promoting digital literacy, the country's extreme winter conditions and geographic characteristics continue to pose challenges. Cold temperatures affect both consistent access to resources and the motivation to participate in digital literacy programs. To combat these challenges, continued investment in rural infrastructure and innovative digital delivery methods that account for the impact of winter will be necessary to advance Finland's digital literacy initiative.

Current Interventions and Solutions

In response to the growing divide in access to technology between urban and rural schools, Finland's government and various educational organizations have implemented several interventions aimed at reducing the digital gap. By working together, they want to ensure that all students have equal opportunities to benefit from digital learning.

One intervention that has been implemented is the "Digital Education Action Plan," which aims to enhance digital education across all regions of Finland especially in rural areas. This plan includes expanding broadband infrastructure in remote regions, ensuring that all students have access to high-speed internet, and providing financial support for schools to acquire modern digital devices (OECD, 2017). The government's commitment to improving rural broadband connectivity is an action step toward reducing the digital divide, as many rural schools continue to face challenges with slow and unreliable internet services.

Additionally, the Finnish National Agency for Education has introduced programs that specifically target rural schools to provide access to digital resources and professional development. For example, the "One Laptop per Child" initiative and various grants have been designed to ensure that rural schools receive sufficient funding to purchase computers, tablets, and other necessary devices (Sahlberg, 2011). These efforts aim to bridge the gap between rural and urban schools in terms of access to educational technology.

Another key intervention involves the training and development of teachers, specifically in rural areas, where access to professional development opportunities has been limited. The Finnish government has invested in online training programs for teachers to improve their digital literacy and enhance their ability to integrate technology into the classroom (Tella et al., 2021). These programs provide educators with the necessary tools to adopt new technologies and teach effectively in a digital environment. By increasing teachers' skills and knowledge in digital pedagogy, these interventions help ensure that students in rural areas have access to high-quality, technology-enhanced education.

Finland has leveraged its strong educational collaboration culture to foster innovation in rural schools. For instance, regional collaborations between rural schools and urban research institutions have helped share resources and best practices in digital learning. Such partnerships allow rural educators to access cutting-edge digital tools and learning strategies that they might not have been able to access independently (Hämäläinen et al.,

2020). These collaborative initiatives encourage the exchange of knowledge and resources, allowing rural schools to catch up with their urban counterparts in terms of technological access.

Finland's vast and often harsh northern geography presents challenges for providing equitable access to technology. This specifically occurs during the winter months when transportation and infrastructure can be impeded by snow and extreme cold. The Finnish government, alongside private sector initiatives, has implemented a range of strategies and interventions aimed at improving digital access in rural areas. These solutions focus on infrastructure development, mobile technology, and innovative delivery methods for digital services, which together, aim to bridge the digital divide and ensure continued access to technology during Finland's long, cold winters.

Expanding Internet Infrastructure in Rural Areas

Part of Finland's strategy to address digital access in rural areas is the continued expansion and improvement of internet infrastructure. In response to challenges posed by remote geography and extreme temperatures, the Finnish government has invested heavily in enhancing broadband coverage, including funding for rural internet infrastructure projects. This effort is part of Finland's broader national policy to provide universal broadband access, with the goal of offering high-speed internet to every Finnish household, regardless of location (Tanttu & Peltola, 2021).

The Finnish government has worked closely with regional authorities and private internet service providers (ISPs) to extend fiber-optic networks to remote regions. Given the challenges of maintaining infrastructure in cold temperatures, these initiatives have included subsidies and financial support for ISP companies to install internet connections in rural and isolated areas. Finland has also explored satellite internet solutions and 5G network rollouts in rural areas, allowing for more reliable and higher-speed internet access in the most remote parts of the country (Tanttu & Peltola, 2021). These infrastructure improvements are important during the winter months when physical access to digital services can be disrupted.

Mobile Technology and E-Services

As Finland works to improve fixed broadband networks, they have also leveraged mobile technology as an alternative solution to ensure that rural populations can access digital services, even in the most frigid conditions. Mobile broadband solutions, including 4G and 5G networks, have been extended into rural areas, making it possible for individuals to access essential services, such as education, healthcare, and government services, via mobile devices (Hakala, 2019). These technologies are more resilient to extreme weather conditions compared to fixed-line infrastructure. They are also more flexible in terms of allowing access in areas where traditional infrastructure may be difficult to establish or maintain.

Finland has also invested in e-services in sectors such as education and healthcare, which are critical for rural populations. Digital platforms for remote learning and telemedicine have become increasingly important during the winter months when travel to physical locations is often dangerous or impractical. These mobile and digital solutions have proven useful in areas where public transport networks are limited or non-existent due to the weather (Hakala, 2019).

Community-Based Digital Initiatives

Beyond governmental and corporate efforts, Finland has also fostered community-based digital literacy and technology access programs in rural areas. These initiatives are often led by local libraries, community centers, and non-profit organizations, and they aim to provide both the hardware and training needed to navigate digital services. During the winter months, when many rural residents are confined to their homes, these local centers act as critical hubs for technology access and digital skills development (Tanttu & Peltola, 2021).

Libraries, in particular, have been helpful in offering public access to computers and the internet in remote communities, while also providing digital literacy courses.

Another notable initiative is the "Digital Inclusion for Rural Finland" project, which focuses on providing digital devices and training to residents of rural areas, particularly the elderly and those in low-income households. These programs often include mobile units that travel to remote areas during winter, delivering digital education and assistance to individuals who might otherwise struggle with accessing technology (Tanttu & Peltola, 2021). Such programs have been helpful to ensure that technology access is not limited by both geography and the harsh weather conditions that often accompany Finland's winters.

In response to the challenges posed by Finland's frigid winters and remote rural regions, the country has implemented a multifaceted approach to improve access to technology. Investments in broadband infrastructure, mobile technology, and e-services, along with community-based initiatives, have all played a crucial role in bridging the digital divide. These efforts are not only focused on enhancing connectivity but also on ensuring that rural populations can fully participate in Finland's digital society, even during the harshest months of the year.

Limitations of Current Interventions

While these interventions have made significant progress in improving access to technology in rural areas, several limitations remain. One challenge is the uneven pace at which digital infrastructure is being improved. Some rural areas still face significant delays in the rollout of high-speed internet, which can affect the effectiveness of digital learning initiatives (OECD, 2017). Furthermore, while digital device distribution efforts have been made, the sustainability of these interventions is often at risk due to limited long-term funding and inconsistent policy enforcement (Tella et al., 2021).

Additionally, although online professional development programs for teachers have expanded, these opportunities may not be as effective in remote regions where teachers face additional barriers such as limited time, access to technology, or professional isolation (Mäkinen et al., 2020). There is also a concern that teacher training initiatives might be inadequate if they do not directly address the specific challenges faced by rural educators in integrating technology into their teaching practices (Sahlberg, 2011).

While Finland has made substantial investments in expanding broadband access, especially through fiber-optic networks, there are still areas, in the northern and more sparsely populated regions, where infrastructure remains inadequate. Extending 4G and 5G mobile networks to remote areas often requires overcoming challenges posed by harsh weather and difficult terrain. The extreme cold, snow, and long winter months significantly complicate the construction and maintenance of these networks, leading to delays and coverage gaps. The financial cost of upgrading infrastructure in rural areas, where populations are sparse, may not be seen as economically viable by private companies, resulting in a reliance on government funding that may not be sufficient to address all underserved areas (Tanttu & Peltola, 2021).

The implementation of satellite internet solutions has offered some promise in bridging these gaps, but issues such as lower speeds, and high costs continue to limit their effectiveness, especially for households that require consistent and fast internet for educational or work purposes (Hakala, 2019). While infrastructure development is ongoing, many remote rural areas still face challenges in obtaining reliable internet services during the winter months.

Economic Barriers and Affordability

Another major limitation in addressing access to technology in rural Finland is economic disparity. Even when infrastructure is available, rural households often face affordability issues that prevent them from accessing necessary technology. The cost of high-speed internet services and modern devices, such as laptops or smartphones, can be prohibitive for individuals in economically disadvantaged rural areas, particularly in the

northern regions where income levels tend to be lower than in urban centers (Tanttu & Peltola, 2021). Beyond the cost of the internet itself, the expense of maintaining home heating during the harsh winter months often takes precedence over investing in digital devices or broadband subscriptions, further exacerbating the digital divide.

Government initiatives that aim to provide subsidies or low-cost technology solutions are limited, and the programs that do exist often focus on urban or suburban areas, leaving rural communities under-served. This financial gap contributes to unequal access to educational resources, employment opportunities, and essential public services that increasingly require digital literacy and connectivity.

Weather-Related Challenges to Maintaining Access

The extreme weather conditions in Finland's northern and rural regions during the winter months present an additional layer of complexity in addressing technology access. The cold temperatures, heavy snow, and frequent storms disrupt both the physical infrastructure and the delivery of digital services. Power outages are common during severe weather events, and the freezing temperatures can damage electronic equipment and telecommunications infrastructure, leading to prolonged service disruptions in affected areas (Hakala, 2019). Even though some digital services are designed to be resilient to such conditions, maintaining connectivity in these areas remains a logistical challenge.

Another problem related to Finland's winter weather conditions is that individuals may be discouraged from attending in-person training or workshops aimed at improving digital literacy. Even with mobile technology and e-learning initiatives in place, individuals in remote areas may struggle with inconsistent access to digital devices due to weather-related challenges in both delivery and service continuity. Additionally, those who are not technologically savvy may feel alienated by the reliance on digital services, especially when frequent outages or slow connections make online learning and communication difficult (Tanttu & Peltola, 2021).

Finally, the high cost of technology upgrades remains a barrier for many rural schools, which may struggle to maintain updated hardware and software due to tight budgets. This issue is compounded by the financial burden of training teachers and providing adequate technical support, both of which are essential for ensuring that digital resources are used effectively in the classroom (Hämäläinen et al., 2020).

While Finland has made significant progress in improving access to technology in rural areas, limitations persist in fully addressing the needs of these populations. Infrastructural challenges, economic disparities, and weather-related disruptions continue to hinder the equitable delivery of digital services.

These barriers highlight the need for continued government intervention and innovative solutions, including the expansion of affordable digital infrastructure, the promotion of alternative technologies for remote areas, and targeted programs that address the unique challenges of Finland's rural regions during the harsh winter months.

Theoretical Connection: Constructivism

Constructivism, as a learning theory, emphasizes that learners actively construct their understanding of the world through experiences and social interactions, rather than passively absorbing information (Brooks & Brooks, 1993). This theory is relevant to addressing the problem of digital access disparities between rural and urban schools in Finland. Constructivist principles suggest that learning is most effective when it is grounded in authentic, meaningful experiences, and when students are encouraged to engage with technology in ways that are both contextual and collaborative (Brooks & Brooks, 1993). In the context of Finland's digital divide, constructivism offers a framework for understanding the limitations rural students face in accessing digital learning tools and the potential for overcoming these barriers through active, contextual learning and scaffolding of resources.

Constructivism asserts that learners build on prior knowledge through active engagement and problem-solving, adapting new information to their existing mental

frameworks (Piaget, 1972). In rural Finland, where schools often lack the resources and infrastructure found in urban schools, constructivism suggests that students could benefit from learning that focuses on solving real-world problems that are directly relevant to their lives. Digital literacy programs that encourage students to actively engage with technology to address local community issues could help bridge the gap. For example, rural students could use digital tools to collaborate on projects related to agriculture, local business development, or community building—projects that directly relate to their lived experiences and challenges. This hands-on, problem-based approach would allow students to not only learn technical skills but also apply them in meaningful ways, strengthening their digital competency and engagement.

One of the key tenets of constructivism is that learning is most effective when it takes place in authentic, situated contexts (Lave & Wenger, 1991). In the case of Finland's rural schools, where access to digital tools and resources is limited, students may benefit from learning environments that simulate real-world digital applications. By integrating technology into projects that address the specific needs of rural communities (such as climate change awareness or remote healthcare), educators can create opportunities for students to interact with technology in ways that are relevant to their daily lives. Situated learning fosters deeper understanding and retention because it ties learning to the students' immediate surroundings and challenges, ensuring that digital skills are not seen as abstract or disconnected from everyday life.

Constructivism also highlights the importance of social learning, where students collaborate and share knowledge with peers in a community of practice (Vygotsky, 1978). In rural areas, where schools may have fewer resources and smaller student populations, collaborative learning can be an effective strategy for overcoming technological disparities. Rural students can work together in groups to complete digital projects, leveraging the strengths of each individual. Collaborative learning not only helps improve digital skills but also builds communication and problem-solving abilities, which are essential for students to succeed in a technology-driven world. Moreover, when teachers are provided with training to facilitate digital collaboration, they can create inclusive learning environments that make the most of limited resources. Peer interaction can mitigate the effects of limited access to technology by enabling students to learn from one another and share digital resources.

Scaffolding, a concept developed by Vygotsky, refers to the support provided to learners to help them perform tasks they cannot accomplish independently (Wood, Bruner, & Ross, 1976). In rural Finnish schools, where teachers may have limited training in educational technology, scaffolding can be a strategy that is utilized to ensure that students develop the digital skills they need. Teachers can scaffold students' digital learning by providing guidance and structured opportunities for hands-on practice with technology, progressively withdrawing support as students become more confident and independent in using digital tools. Rural schools could adopt blended learning environments, where teachers use digital platforms to offer tailored learning experiences, while simultaneously providing personalized assistance to ensure that each student progresses at their own pace. By gradually increasing the complexity of tasks and providing targeted feedback, scaffolding can help close the digital divide, allowing rural students to develop their digital literacy over time.

Constructivism emphasizes the development of critical thinking and problem-solving skills through the application of knowledge in real-world contexts (Jonassen, 1999). In Finland's rural areas, where students may face challenges related to technology access, constructivist teaching approaches can promote problem-solving by engaging students in projects that require the use of digital tools to address local issues. For example, students might use social media platforms to raise awareness about environmental concerns in their community. Activities like this could improve digital literacy while fostering critical thinking, as students learn to use technology as a tool for inquiry and innovation. By involving students in

tasks that require digital tools to solve authentic problems, schools can prepare them for a future in which digital skills are crucial for addressing global and local challenges.

Constructivism provides a valuable framework for addressing the digital access disparities between rural and urban schools in Finland. By promoting active, contextual, and collaborative learning, constructivist principles can help ensure that rural students gain the digital literacy they need to succeed in a technology-driven world. Through scaffolding, situated learning, and problem-based approaches, teachers can provide meaningful learning experiences that bridge the gap between rural and urban educational opportunities. Doing this will empower students to use technology as a tool for problem-solving, communication, and critical thinking.

RECOMMENDATIONS

To effectively address the digital education access gap between rural and urban areas in Finland, a multifaceted approach is needed. Rural communities, especially those in the northern regions, face unique challenges such as limited internet connectivity, lack of infrastructure, and fewer opportunities for teacher training in educational technology. These challenges must be addressed through targeted interventions, investments in infrastructure, and programs that focus on community-based solutions. The following recommendations outline potential strategies to bridge the digital divide in Finland's education system.

Virtual schooling has the potential to bridge the access gap between rural and urban students, which could be beneficial during winter months when transportation and connectivity issues can hinder in-person learning. However, to ensure the effectiveness of virtual schooling initiatives, it is necessary to monitor the usage patterns of both teachers and students. This can be achieved by collecting data on log-ins, course participation, and engagement levels within the virtual learning environment. Monitoring these data-points will allow educational authorities to identify trends in platform usage, detect gaps in access, and tailor interventions to support underperforming regions or groups. For instance, if a particular school or region shows low engagement, targeted interventions—such as additional tech support or community outreach—can be deployed to encourage increased usage.

To measure the impact of virtual school adaptations, it will be important to assess students' digital literacy before and after exposure to online learning. Pre- and post-assessments can help gauge how much students' digital skills have improved as a result of using the virtual platform. These assessments should evaluate both basic technological proficiency (e.g., navigating digital platforms, using educational software) and more advanced skills (e.g., conducting research online, collaborating in virtual environments). This approach provides valuable data on the effectiveness of digital education interventions and helps educators adjust their teaching strategies accordingly (Graham, 2019). Implementing pre-and post-assessments to evaluate students' digital literacy, will assist educators in tracking changes in their proficiency levels of students as they engage with virtual learning platforms.

For virtual schooling and digital education to be successful, teachers must be adequately trained in using digital tools. In rural areas, where teachers may have fewer opportunities for professional development, providing tailored digital training is crucial. Monitoring the number of teachers enrolled in rural digital teacher training programs can ensure that training opportunities are reaching the intended audience. This tracking should also consider the level of training provided (e.g., introductory, intermediate, or advanced) to ensure that teachers are equipped with the skills necessary for their specific teaching environments (Trinder et al., 2021). Keeping track of the enrollment rates and participation levels of teachers in rural digital training programs to ensure wide access to professional development is necessary to identify areas for improvement.

In addition to monitoring enrollment, evaluating the effectiveness of teacher training programs in both rural and urban areas is essential. Pre- and post-training evaluations can provide insights into the success of these programs by measuring teachers' confidence and competence in using digital tools. Feedback from teachers on the training content, format,

and delivery method can further inform improvements. For example, if rural teachers report that they need more support in using specific digital tools, these areas can be prioritized in future training sessions.

Additionally, evaluating long-term outcomes, such as student engagement, can provide indirect evidence of the effectiveness of teacher training (Dixson & Worrell, 2020). Conducting pre- and post-training evaluations to gather teacher feedback on digital training programs, will provide insight into areas for improvement and long-term impact on teaching practices as Finland seeks to close the gap in access between geographic areas. Once data has been collected on the effectiveness or gaps in teacher training programs, the government can make investments via grants or subsidies to pinpoint areas or regions that are in need of improvement.

In rural areas where reliable internet access may be intermittent, providing offline access to digital resources could be another key strategy to ensure continuous learning. Offline resources, such as downloadable e-books, video lessons, and interactive content, can be accessed during periods of connectivity disruption. To understand the effectiveness of these offline solutions, it is important to monitor how often and for how long students and teachers use these resources. Data tracking tools that log interactions with offline materials can provide insight into which resources are most valued and frequently used, allowing educational authorities to refine and expand the offline offerings based on usage trends (Higgins et al., 2020). Monitoring the frequency of offline resource access to assess usage patterns and identify opportunities to improve content offerings for rural students and teachers.

Follow-up surveys and skills testing are essential to evaluating the effectiveness of offline digital literacy materials. These assessments can determine whether students are improving their digital skills by using offline resources and if they are able to transfer these skills to online platforms when internet access is available. This feedback loop can help identify areas where offline materials may need to be improved or expanded, and also highlight which skills (e.g., basic computer skills, online collaboration) are most in need of attention. Additionally, surveying teachers about the usability and impact of offline materials can guide the development of future content and ensure that these resources are aligned with students' learning needs (Ertmer et al., 2019).

Finland can bridge the digital divide between rural and urban students by adopting a comprehensive, data-driven approach. This approach could include monitoring virtual school participation, assessing digital literacy improvements, and tracking offline resource usage. Additionally, providing tailored digital teacher training and continuously evaluating the effectiveness of these initiatives will ensure that all students have equitable access to digital education, regardless of their geographic location. These recommendations offer potential for improving digital technology access in Finland's education system.

CONCLUSION

Addressing the digital education access gap between rural and urban areas in Finland requires comprehensive efforts to improve infrastructure, increase access to digital resources, and enhance the skills of educators and students alike. By continuing to focus on building resilient infrastructure, offering continuous teacher training, fostering community-based learning initiatives, and leveraging offline learning solutions, Finland can ensure that all students, regardless of location, have the opportunity to thrive in a technology-driven educational environment.

REFERENCES

Aaltonen, M., & Länsisalmi, H. (2021). Seasonal affective disorder and its impact on digital engagement in Finland. *Journal of Nordic Psychology*, 12(3), 78-92.

Brooks, J.G., & Brooks, M.G. (1993). In search of understanding: The case for constructivist classrooms. ASCD.

Dixson, M. D., & Worrell, F. C. (2020). Assessment in the digital age: Current trends and future opportunities. *Journal of Educational Psychology*, 112(3), 459-474. <https://doi.org/10.1037/edu0000365>

Ertmer, P. A., Ottenbreit-Leftwich, A. T., & Barlau, L. (2019). Teacher beliefs and technology integration practices: A critical review of the literature. *Educational Technology Research and Development*, 67(3), 507-537. <https://doi.org/10.1007/s11423-019-09776-4>

Graham, C. R. (2019). Blended learning systems: Definition, current trends, and future directions. In M. G. Moore (Ed.), *Handbook of distance education* (4th ed., pp. 247-260). Routledge.

Hakala, P. (2019). Mobile broadband solutions in rural Finland: Addressing challenges of access and infrastructure. *Journal of Rural Technology*, 25(3), 45-60.

Heponiemi, T., Gluschkoff, K., Leemann, L., Manderbacka, K., Aalto, A.-M., & Hyppönen, H. (2023). Digital inequality in Finland: Access, skills and attitudes as social impact mediators. *New Media & Society*, 25(9), 2475-2491. <https://doi.org/10.1177/14614448211023007>

Higgins, S., Xiao, Z., & Katsipataki, M. (2020). The impact of digital technology on learning: A review of the evidence. *Educational Psychologist*, 55(3), 179-196. <https://doi.org/10.1080/00461520.2020.1764359>

Hämäläinen, R. (2020). The digital divide and its socio-economic implications in Finnish rural areas. *Finnish Educational Review*, 56(1), 43-56.

Hämäläinen, R., Häkkinen, P., & Vesterinen, M. (2020). Bridging the gap: Digital infrastructure and education in rural Finland. *Journal of Educational Technology*, 12(3), 45-59.

Jonassen, D. H. (1999). Computers as mindtools for schools: Engaging critical thinking. Merrill/Prentice Hall.

Lave, J., & Wenger, E. (1991). *Situated learning: Legitimate peripheral participation*. Cambridge University Press.

Mäkinen, M., Lahtinen, M., & Tuominen, H. (2020). The digital divide in Finnish education: A case study of urban and rural schools. *Journal of Educational Policy and Practice*, 15(4), 12-29.

OECD. (2017). *OECD review of school resources: Finland*. OECD Publishing.

Piaget, J. (1972). *The principles of genetic epistemology*. Routledge.

Sahlberg, P. (2011). *Finnish lessons: What can the world learn from educational change in Finland?* Teachers College Press.

Tanttu, M., & Peltola, R. (2021). Improving broadband access in rural Finland: Government policies and private sector collaboration. *Scandinavian Journal of Public Policy*, 44(2), 120-134. <https://doi.org/10.1093/scandpub/44.2.120>

Tella, S., Kupiainen, S., & Lehtinen, E. (2021). Teacher professional development in a digital age: Urban-rural differences in Finland. *Educational Technology Research and Development*, 69(1), 11-25.

Trinder, L., Hughes, A., & Rees, R. (2021). Teacher professional development in digital education: Implications for practice in rural schools. *Technology, Pedagogy and Education*, 30(4), 423-441. <https://doi.org/10.1080/1475939X.2021.1957225>

Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. *Journal of Child Psychology and Psychiatry*, 17(2), 89-100. <https://doi.org/10.1111/j.1469-7610.1976.tb00381.x>