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I. Introduction 

Investments in the financial market are guided by optimisation programs seeking to 
maximise expected returns while minimising risk, popularised by Markowitz's mean-variance 
model (1952). This risk management approach's underlying assumption is that financial agents 
make rational decisions in a risky universe. In addition, markets are efficient, as Fama (1970) 
argued, implying that a security's fundamental value equals its market value, irrespective of 
future returns. 

Entropy has been utilised in portfolio selection theory to measure diversity, with several 
studies examining market efficiency, such as George et al. (2021), Gong et al. (2022), Gu et al. 

The purpose of this study is to review the empirical work applied to market 
efficiency, portfolio selection and asset valuation, focusing on the 
presentation of the comprehensive theoretical framework of Information 
Entropy Theory (IET). In addition, we examine how entropy addresses the 
shortcomings of traditional models for valuing financial assets, including the 
market efficiency hypothesis, the capital asset pricing model (CAPM), and the 
Black and Scholes option pricing model. We thoroughly reviewed the 
literature from 1948 to 2022 to achieve our objectives, including well-known 
asset pricing models and prominent research on information entropy theory. 
Our results show that portfolio managers are particularly attracted to 
valuations and strive to achieve maximum returns with minimal risk. The 
entropy-based portfolio selection model outperforms the standard model 
when return distributions are non-Gaussian, providing more comprehensive 
information about asset and distribution probabilities while emphasising the 
diversification principle. This distribution is then linked to the entropic 
interpretation of the no-arbitrage principle, especially when extreme 
fluctuations are considered, making it preferable to the Gaussian distribution 
for asset valuation. This study draws important conclusions from its extensive 
analysis. First, entropy better captures diversification effects than variance, as 
entropy measures diversification effects more generically than variance. 
Second, mutual information and conditional entropy provide reasonable 
estimates of systematic and specific risk in the linear equilibrium model. 
Third, entropy can be used to model non-linear dependencies in stock return 
time series, outperforming beta in predictability. Finally, information entropy 
theory is strengthened by empirical validation and alignment with financial 
views. Our findings enhance the understanding of market efficiency, portfolio 
selection and asset pricing for investors and decision-makers. Using 
Information Entropy Theory as a theoretical framework, this study sheds new 
light on its effectiveness in resolving some of the limitations in traditional 
asset valuation models, generating valuable insights into the theoretical 
framework of the theory. 
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(2021), Horta et al. (2014), MacLean et al. (2022), Mahmoud and Naoui (2017), Sukpitak and 
Hengpunya (2016), Zhao et al. (2020), and Zhou et al. (2013). 

To solve the asset selection problem, Markowitz (1952) developed the mean-variance 
method. Sharpe's (1964) CAPM model became the standard for valuing financial assets. 
According to Fama (1970), market efficiency is essential to classical finance models. Prices 
instantly absorb all relevant fundamental information in an efficient market of rational investors. 
As a result, investors seek to maximise their profits without beating the market (Fama, 1970). 
Black and Scholes (1973) contributed significantly to financial theory, developing a model for 
option pricing. 

Options are valued chiefly by the underlying asset's value, unlike stocks, bonds, or other 
financial assets. Option valuation has been based on this model for many years. According to 
traditional asset pricing models (Carhart, 1997; Fama & French, 1993, 2015; Ross, 1976; Sharpe, 
1964), observed asset returns reflect observed risks. 

A crucial point to note here is that the classical valuation of assets (Fama, 1970; 
Markowitz, 1952; Sharpe, 1964) derives from Black and Scholes (1973), who measured stock 
likelihood through the variance and mean of Gaussian probability distributions. 

Throughout the 1960s, work in market finance contributed to developing models for 
valuing economic assets. The rationality hypothesis underlies these models, which advocate 
efficient financial markets and provide portfolio managers with tools to manage their portfolios. 
This vision focuses on averages, stability, and the return to equilibrium following a shock. These 
models revolve around a hypothesis narrow hypothesis: all markets in a Gaussian universe are 
efficient (Markowitz, 1952; Fama, 1970; Sharpe, 1964). 

Information Entropy Theory (IET), based on (Backus et al.'s (2014) theory, mathematically 
and physically reduces entropy. This theory provides an innovative and promising approach to 
market efficiency, portfolio selection and financial asset valuation. IET can be a powerful tool for 
portfolio selection and asset pricing, with applications to understanding financial market 
dynamics and functioning. It has been used in various studies, including those by Li and Liu (2008) 
and Xu et al. (2011). 

As defined by Shannon (1948), the information entropy theory measures portfolio 
returns. Various methods have been developed to measure portfolio risk (Xu et al., 2011) and 
evaluate option prices (Gulko, 1999). Risk and return are intrinsically interconnected, 
necessitating a trade-off between entropy and variance. 

In addition, entropy theory can provide novel insights into market behaviour. In 
Information Entropy Theory (IET), behavioural and informational investment theories are 
integrated within a common framework, contributing to a better understanding investors' 
decision-making processes. 

In their study, Backus et al. observed that. It has been demonstrated that the information 
entropy theory can be applied to asset pricing models. It has also been suggested that Breuer 
and Csiszár (2013), as well as Piquet et al. (2021) and Ormos and Zibriczky (2014) should be used to 
assess the uncertainty surrounding portfolio selection in terms of performance, Brissaud (2005) 
to quantify accounting information loss, and Breuer and Csiszár (2013). Further, Hancock et al. 
(2011) have utilised entropy theory to measure how human decision-making in financial matters is 
influenced by entropy. 

Further, Piquet et al. (2021) introduced the concept of a fuzzy LR power number to 
describe risk asset return rates to accommodate different investor attitudes about risk assets. To 
diversify portfolios without incurring additional risks, their model incorporates a risk-free 
constraint which allocates downside risk based on the individual's risk attitude when allocating 
downside risk (Zhao et al., 2020). MPSOs are superior to traditional PSOs in a real-world setting in 
optimising multi-particle problems using swarm optimisation methods. These have proven 
advantageous for investors with different risk attitudes based on developing swarm optimisation 
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methods for multi-particle problems. As a point of caution, it is worth noting that the model does 
not consider short sales, which may be an exciting consideration for future research. 

This study reviews the empirical work applied to market efficiency, portfolio selection and 
asset valuation to expose the comprehensive theoretical framework of Information Entropy 
Theory (IET). Further, we investigate how entropy treats traditional models' shortcomings for 
valuing financial assets (market efficiency hypothesis, CAPM, Black and Sholes option pricing 
model). 

This study aims to contribute to the IET literature in several ways. In addition to justifying 
the efficient market hypothesis using the entropy hypothesis, entropy-based portfolio selection 
models emphasise diversification, correct Black-Scholes' equation by adding adjusted volatility, 
and introduce redundancy to solve theoretical problems. 

We conclude that (a) Entropy is a more accurate measure of risk than diversification 
variance. In contrast to variance, entropy applies to diversification's effects more broadly. (b) 
With mutual information and conditional entropy, the linear equilibrium model estimates 
systematic and specific risk well. (c) Entropy can be used to model non-linear dependencies 
regarding predictability. (d) The asset pricing model's entropy is more potent than beta. Empirical 
validations support this information entropy theory and correspond to financial perspectives. 
Furthermore, our findings enhance investor and decision-maker understanding of most major 
empirical finance studies. 

This paper is divided into sections. Section 2 reviews traditional asset valuation methods 
and discusses their shortcomings. The effectiveness of the IET's risk measurement system is 
assessed. Our findings are presented and analysed in section 3. Section 4 of the study highlights 
information entropy. 
 

II. Methodology 

We completed a comprehensive literature review covering 1948 to 2022 to conduct this 
study. This study aims to collect empirical evidence and academic papers on market efficiency, 
portfolio selection, asset valuation and risk measurement. Academic databases, journals and 
relevant publications will be searched. Using existing research as a basis for our analysis, we can 
draw valuable insights and implications for future applications of IET in the financial sector. This is 
based on our analysis. 

To ensure the accuracy and reliability of our review, we will use a systematic and rigorous 
approach to selecting relevant literature from a wide range of sources. We will critically evaluate 
each study's methodology and conclusions as part of our analysis. We will also compare and 
contrast views and arguments about IET's effectiveness in addressing traditional models' 
limitations. This project will also improve asset valuation and risk measurement practices. 

In summary, the methodology section of this paper outlines our approach to examining 
the shortcomings of traditional asset valuation models and making suggestions for improvement. 
A basic understanding of Information Entropy Theory's theoretical framework is explored. In 
addition, the theory applies to asset valuation and risk assessment. As a result of our study, we 
believe that IET can improve financial decision-making and contribute to a better understanding 
of market behaviour and uncertainty in asset pricing. 
 

Shortcomings of Traditional Asset Valuation Models 
According to efficiency theory, assets trade at a price that reflects all information 

instantly (Fama, 1965). Unless additional information is provided, the price will stay the same. 
Therefore, each price in the future is independent of the previous one. Additionally, we exist in a 
situation where information influences prices in a weakly interdependent manner. Because of 
this, we live in a world of chance. According to Sharpe (1963), investment returns are exclusively 
related because they are market-based. 
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Portfolio theory can benefit from the utility of risk, risk aversion, risk measurement, and 
expectation-variance approaches (Sharpe, 1963). Portfolio theory solves economic decision 
problems under threat as investors choose financial investments with random returns according 
to this theory (Markovitz, 1959). Securities are not included in this study’s portfolio theory of 
financial assets, and various guarantees are available on the market. 

Numerous articles have reviewed the literature on capital asset pricing models (CAPMs). 
Despite Fama and French's (2015) findings, CAPM does not appear responsible for anomalous 
models. A wide range of works on stock market anomalies has been cited by Fama and French 
(1993). The authors explain stock returns by book-to-market equity and size. By removing the 
most extreme 1% of observations per month, Knez and Ready (1997) deny that size and book-to-
market equity are combined to explain the size risk premium. 

In response to criticism of the CAPM, Ross (1976) lodged Arbitrage Pricing Theory (APT). 
APT emphasises that expected return is determined by several influencing variables instead of a 
single risk factor. Unlike the CAPM, the APT is not affected by the problems of measuring market 
exposure. It is commonly assumed that market prices reflect all relevant information instantly, 
which is one of the main assumptions of asset price models (Ross, 1976). The validity of this 
hypothesis has been the main subject of debate, and many studies have been conducted to test it 
against actual market data. Although the efficient market hypothesis is not universally accepted, 
its simplicity makes it essential. It allows for the handling of increasingly complex models of asset 
pricing theory. Since then, financial theory has struggled to identify the factors that explain 
investment performance (Hübner et al., 2015). 

Different perspectives on asset pricing have been explored in the literature, including the 
CAPM. Assuming market efficiency, the CAPM determines the risk price. Risk and return are 
therefore traded off in it. Based on the CAPM, equity returns are determined by market returns 
and the covariance of interest rates. The beta coefficient measures the return on stock 
investment as a function of its regression slope. Market betas are, therefore, a positive linear 
function of expected stock returns. Cross-sectional stock returns, however, can be explained by 
market betas. 

It is impossible to create a perfect market, and investment would be more attractive if 
prices accurately reflect all information (Grossman & Stiglitz, 1980). Therefore, Market efficiency 
is measured over time to determine how it has changed. To explain variations in market 
efficiency over time, An adaptive market hypothesis (AMH) has been proposed by Lo (2004). 
Market efficiency no longer varies across time or space due to the revised AMH hypothesis. 

Ex-ante risk premia and betas are incorporated into the CAPM. Time series data are used 
to calculate excess return rates and betas. However, betas and risk awards for individual assets 
change. t is implicitly assumed that betas and average asset returns are consistent in time series 
analysis because of the two-period structure of the CAPM. Thirdly, many assets are non-tradable, 
and the CAPM tests are invariably based on market portfolio proxies that exclude significant 
asset classes such as human capital. Literature has utilised different approaches to address these 
issues. 

A study by Fama and French (1993) found that stock returns are correlated with firm 
characteristics, such as the ratio of cash flow to price, the earnings ratio to cost, and price-to-
book values. Anomalies in CAPM prevent CAPM from explaining these elements. As a result, 
Fama and French (1996) developed the three-factor model to describe them. Rosenberg et al. 
(1985) constitute inefficiency indicators which raises questions about the joint hypothesis of 
informational efficiency as the risk is a linear combination of several factors (Fama & French, 
2015). Therefore, it is not anomalies that the ex-post CAPM does not capture but premiums that 
compensate for the asset’s risk. According to Fama and French (1996), the solution aims to 
introduce a novel dimension to the asset risk equation. According to Campbell et al. (1997), total 
efficiency is impossible. 
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The CAPM fails empirical tests, implying that most applications are invalid (Fama & 
French, 2015). Risk can be measured using returns variance in models. It is hypothesised that 
returns should have a normal distribution or be distributed according to any two-parameter 
distribution of returns. It is more appropriate to use a measure of risk that is consistent with the 
preferences of active and potential shareholders (such as consistent risk measures). However, 
this re about the probability of losing: it is asymmetrical (K. D. Daniel et al., 2001). Fama and 
French’s (1993) model extends Carhart’s (1997) model. Sharpe (1964), Mossin (1966), Fama and 
French (1993), and Daniel and Titman (1999) added the Momentum factor in 1993 as described by 
Sharpe (1964), alongside the CAPM used by Carhart (1997). Investing in momentum means 
choosing stocks that have performed well and are likely to do so in the future. 

While Kothari and Warner (2001) found that the Fama-French and Carhart models 
provided better results, the classical CAPM has disadvantages. The paper to detect the abnormal 
significance of the result does not exist. Other criticisms are still valid. Three major conceptual 
problems need to be addressed to test the CAPM. Developing returns under the CAPM imposes 
non-linear difficulties on the economic model. When stretching whether a market proxy portfolio 
lies on the portfolio frontier, betas, variances, and covariances must be estimated with this 
constraint. However, this depends on the parameters that are to be evaluated. Rather than 
measuring systematic risk, Sharpe's (1966) index measures the portfolio’s performance, not 
individual assets. Jensen (1978) and Treynor (1965) analyse portfolios and individual securities. 

Several criticisms of Treynor’s (1965) model are as follows. First, Treynor considers only 
systematic risk. Second, the index measures the ability of managers to select individual stocks 
but not their ability to predict market movements. Third, the index uses a risk-free investment 
rate that may vary from investment to investment. Fourth, the Sharpe index (1966) measures the 
variability of returns. Diversifying, but not separating, upside from downside risks is the aim of 
this measure. Risk-free return rates are equal to lending and borrowing rates. When a risk level is 
exceeded, which is invalid? This criticism applies to both Treynor and Sharpe’s measures. Fifth, 
Treynor (1965) consider portfolios favourable only if they are above the securities market line. 

At any given time, the price of an underlying asset can move up or down equally, 
according to Black and Sholes (1973). However, this is generally not true because many economic 
factors determine stock prices in the market. When they are wet, we cannot assign the same 
probability to their effect on asset price movements. According to Black and Sholes (1973), stock 
prices should be generally distributed. However, this hypothesis has been widely disputed and 
even rejected. There is a marked difference between empirical and Gaussian distributions 
regarding thick tails. As per the standard distribution definition, kurtosis coefficients are more 
significant than 3 when using the defined distribution. 

A couple of exciting phenomena were observed by Rubinstein (1994). Until the October 
1987 market crash, Black-Scholes appeared to be a good model for valuing S&P 500 options. He 
also said the Black-Scholes model has consistently undervalued ace-in-the-hole options since 
October 1987. In practitioners’ terms, volatility smiles refer to patterns of mispricing. As strike 
prices increased, the implied volatility of the index for option money decreased. Even when 
volatility appears stable for short periods, it is never constant. Economic and political factors 
contribute to volatility, so it varies over time and is often accompanied by non-stationarity. The 
model assumes stable interest rates, and in reality, this hypothesis is untrue. In this model, the 
risk-free rate represents this constant and known rate. 
 

IET and Asset Valuation 
According to Shannon (1948), the essential objective of information theory is to measure 

information by defining a quantity of information. A source of entropy will be used. 
Information is permanently attached to an event; the more unpredictable it is, the more 

data it contains. As an inference method rather than a physical theory, statistical mechanics can 
be seen as a form of statistical inference (Jaynes, 1957). To determine the partition function, we 
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must follow the usual computational rules established by this maximum entropy principle, 
starting with choosing the partition function. Generally, time series with higher entropy values 
are less predictable and have better information transmission (Gulko, 1999). 

A novel formula for pricing European options was introduced by Gulko (2002) based on 
the IET. He developed a beta model. , he discussed option replication and beta model properties. 
In many ways, the beta model is easier to use than the Black-Scholes model. Alternative option 
valuation models demonstrate fewer restrictions and greater accuracy than the beta model. 
Different types of entropy are included in various concepts of entropy: 
Shannon's Entropy (1948) expresses the amount of information available. As a measure of the uncertainty of a 
random event, it can be viewed as a measure of randomness. Specifically, the uncertainty function of an 
upcoming event is a function of its distribution. This is the information provided by that recent event, i.e., its 
uncertainty function. Shannon entropy offers unprecedented insight into the relationship between knowledge 
and thermodynamics. It could also be applied in any context where probabilities can be defined; it was not 
limited to thermodynamics. It is possible to consider thermodynamic entropy as a particular case of Shannon 
entropy since it is used to measure the chances of each state in an entire state space. 

To develop an informal entropy theory, Shannon conducted statistical analyses based on 
Hartley's formula (1928) and developed his entropy measures. There has been much debate over 
the choice of various information measures, as Campbell and Thompson (2008) have 
investigated. The following steps were outlined during his presentation: characterisation of 
Shannon's entropy measure, characterisation of Shannon's estimation of Shannon's entropy of 
generalised probability distributions, description of the amount of information I(QI(P) and 
proving Markov chains' limit theorem based on information theory. 

Claude Elwood Shannon, an engineer working at Bell Laboratories at the time and author 
of the book A Mathematical Theory of Communication published in 1948, published A 
Mathematical Theory of Communication. The following year, a re-publication of the work titled 
"The Mathematical Theory of Communication" was published under "The Mathematical Theory 
of Communication" to reach a wider audience, including an introduction by Warren Weaver. 
Shannon's theory of information is, therefore, also a theory of details by compression, which 
instead of considering any sequences, assumes that the lines transmitted verify specific statistical 
properties. Finally, Shannon's theory is about information content relative to a compression goal 
and to a particular statistical distribution of sequences. It is, therefore, not a limited theory of 
information because it only deals with the transmission; it is a theory of probabilistic information 
compatible with the algorithmic theory of knowledge and limited simply because it is relative to 
particular probabilistic distributions. 

The term "entropy" was first used by Clausius (1854) to describe a quantity whose 
quantity increases with increasing heat levels. There is a reason why at that time (as it is still 
today), thermodynamic entropy is also called Clausius entropy. It is intended to pay homage to 
the one who invented the German term "entropy" by analogy to the word "energy" from the 
radical Greek meaning "action of transformation", as well as the person who also invented the 
English term "energy". There were no atomic structures of matter when the concept of 
thermodynamics was developed, and it only dealt with macroscopic quantities like temperature, 
pressure, and volume at the time. 

Boltzmann (1872) associates the value and direction of a particle's velocity with 
coordinates corresponding to each speed at a point in mathematical space. The probability of a 
distribution is thus directly proportional to the number of microstates that realise it. Some 
distributions are more probable than others. The distributions are a set of system states, and the 
system spends more time in the form most likely to occur. 

The Gibbs entropy of a classical macroscopic system is a function of the probability 
distribution in phase space. It applies to a set of techniques occupying the phase area’s whole or 
part. The question arises according to the nature of the probabilities taken into account in its 
calculation: if they are exclusively objective probabilities, there are no problem objective 
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probabilities, there is no problem; if, on the other hand, we include in the formula with degrees 
of belief or with chances that have, for example, ignorance, and ignorance of the precise 
characteristics of the system and of the fluctuations (some researchers defend the possibility of 
mixing the two because it does not change anything once it is a question of measurement and 
expected value), so since the data are at least partially subjective, the at least somewhat 
personal, entropy must, if it still means anything, be itself emotional. Be true to yourself against 
the idea that entropy calculated with the Gibbs formula can carry a particular meaning of 
significance (Goldstein et al., 2020). 

Approximate Entropy (APEN) is approximate entropy of time series that Pincus (1991) 
proposed to quantify the randomness of time series. The "ApEn" value will increase when a time 
series data set has a high level of randomness. The approximate entropy of observations, called 
ApEn, can be described as a measure of statistical regularity to estimate the probability that a 
pattern of similar words will not be followed (S. Pincus & Singer, 1996). 

Oh et al. (2007) used an integration dimension of m = two and a standard deviation of 20% 
for time series returns as an example of how this measure is applied to financial markets. A 
simple approximation to entropy is a calculation based on the probability that similar time series 
patterns will remain the same for subsequent comparisons. This is a simple calculation. Tests 
based on this method were designed to measure irregularities in a complex non-linear system. 
Still, Pincus and Kalman (2004) introduced them as a measure of market efficiency for stocks and 
foreign exchange. 

Tsallis' entropy (1988) provides the same character as Shannon's entropy. The only 
difference is that for Tsallis entropy, the degree of homogeneity in a convex linearity condition is 
α instead of 1. The same formula was introduced by Havrda and Chárvat (1967) and Patil and 
Taillie (1982) in information theory to measure the biological diversity of organisms. 

One of the easiest ways to calculate the distance between two points is to calculate the 
cross-entropy, as proposed by Kullback and Leibler (1951). This measure measures how many bits 
are required to identify an event from a set of circumstances, calculated by looking at the cross-
entropy between the two probability laws. Generally speaking, the term tribe is used in 
mathematics to describe the distribution of events based on a probability distribution q. This is 
relative to a reference distribution p on which the event distribution is found. There are 
differences between the Kullback cross-entropies and Tsallis relative entropies, and the 
difference between them is known as the Tsallis relative entropy. 

Fuzzy entropy is an expression of fuzzy set theory, an origin of fuzzy entropy. The first 
definition of non-probabilistic entropy was given by De Luca and Termini (1972), who were 
influential in this development, as well as others such as Bhandari and Pal (1993), Kosko (1986), 
and Yager (2000). Li and Liu (2008) proposed a new definition of entropy based on it being 
characterised as uncertainty resulting from a lack of information caused by failure to predict 
precise values based on available data. 

Proposed by Alfréd Rényi, Renyi entropy is a function that corresponds to the amount of 
information contained in the probability of the occurrence of a crisis (Jizba & Arimitsu, 2004). 
This is a random variable. Rényi entropy is used for communication and coding, data mining, 
detection, segmentation, classification, hypothesis testing, image alignment, etc. 

The mean-entropy approach was compared to traditional methods: Construct all possible 
efficient portfolios from a randomly selected sample of monthly closing prices for 50 securities 
over 14 years. The mean-entropy portfolios were consistent with the Markowitz full-covariance 
and Sharpe single-index models. 

Tabakis (2000) says two principles exist for choosing a risk-neutral measure among all 
entropy measures, which minimises the information each measure can obtain. These principles 
can also be called the maximal entropy principle of Gulko (1999). They used finite trading times 
and independent log returns to test this principle. As expected, this resulted in a distribution with 
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exponential tails instead of Gaussian seats. In the presence of exponential tails, they implied 
volatility smiles. As for the second principle, Fisher’s information minimises using a fixed 
measure, such as the Black-Scholes distribution, to compute probability distributions. This type of 
problem has been studied extensively using robust statistics, and the results are readily available. 
In the case of Gaussian central models, the Huber distribution, which has exponential tails, is the 
resulting distribution when Gaussian major models are employed. 

The maximum entropy distribution of several samples was studied by Neri and Schneider 
(2012), who developed a simple and robust test for the maximum entropy distribution. The 
researchers then compare the results of their study with those of Buchen and Kelly. It is 
estimated that the full entropy distribution can be obtained by opting for the index option. 
According to their findings, Buchen and Kelly (1996) are on the same page. According to a 
growing number of research papers, the theory of portfolio selection is supported by entropy, 
and these studies include Smimou et al. (2007), Usta and Kantar (2011) and Xu et al. (2011). They 
propose several forms of generalised entropy. According to entropy theory, an optimal portfolio 
can be suggested according to a given probability of a return. 

Using the entropic method, Brody et al. (2005) obtained the spot price dependence of 
options and the relevant Greeks within a time-reversed economy by applying the technique to 
the time-reversed economy. It is well known that entropic calibration has several advantages. To 
begin with, it can be ensured that all constraints are met precisely. There are arbitrage 
opportunities when the Lagrange multiplier root search does not converge, indicating mispricing 
and opportunities for arbitrage. Thirdly, there is the advantage of having a stable and fast 
algorithm to implement the result, which is the third benefit of the algorithm. 

Based on Shannon's entropy, the author Usta and Kantar (2011) calculated portfolio 
diversity based on Shannon's entropy. Using probability as an objective function makes it 
possible to determine portfolio weights based on the probability function. Conservative investors 
preferred a portfolio that lacked short selling for theoretical and practical reasons. There has 
been considerable research on the theory of "mean-variance skewness entropy" to select 
portfolios. Using a novel denoised frequency domain entropy framework, Owusu Junior et al. 
(2021) then applied this framework to analyse global equity markets in the aftermath of the 
COVID-19 pandemic. Accordingly, they have argued the opposite theory to shock transmission: 
diversification benefits are derived from information flow. 

Xu et al. (2011) use mixed entropy to estimate the risk associated with a random and fuzzy 
process based on an arbitrary and unclear approach. According to Usta and Kantar (2011), using a 
"mean-variance - skewness - entropy" model to test portfolio selection is more suitable than 
using traditional portfolio selection models in terms of its relevance. Using the objective entropy 
function to generate a diversified portfolio with optimal asset allocation, Borup et al. (2023) 
developed a new consumption-based model called the Revised CCAPM based on the objective 
entropy function. 

By utilising Approximate Entropy, Bhaduri (2014) attempts to explain the stock market 
crash as it happened in three countries: the US, Japan, and India. Furthermore, the research team 
investigated the 1997 Asian crisis using weekly data from seven of the most critical Asian indices. 
As a result, Hong Kong, Malaysia, Singapore, Korea, Taiwan, Indonesia, and Japan are among the 
most influential. This study's vital signs point to a significantly reduced Apen level during these 
crashes, consistent with the critical symptoms. 

Several conditions must be met to minimise the entropy martingale approach discussed 
and derived by Hunt and Devolder (2011). For such a measure to be effective, it should be 
arbitrage-free and attached to the martingale measure. It was found that Oh et al. (2015) used 
the return time series of several financial markets, such as the S&P500, KOSPI, and DAX, to 
examine the entropy density function and its variability over time. In the years since the subprime 
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crisis, the S&P500 index has seen its entropy decrease significantly, while in the DAX and KOSPI 
markets, risk has not decreased considerably. 

Sukpitak and Hengpunya (2016) examined the evolution over time of the Hurst exponent 
of the SET index based on the DFA method. There is also evidence that during the study period, 
the Hurst exponent tends to decrease to an ideal value of 0.5, which indicates an improvement in 
market efficiency, which suggests an increase in sales. Several factors influence the efficiency of 
the market, including market capitalisation. The mean-variance-skewness-kurtosis-entropy model 
was tested using various portfolio optimisation models based on two real data sets. An 
evaluation was conducted using Shannon's entropy and Gini-Simpson's entropy for portfolio 
selection. As Aksaraylı and Pala (2018) mention in their article, the proposed approach can be 
applied to portfolio models with high moments. 

Fard et al. (2021) propose an effective method for estimating hedging error 
asymptotically using the maximum entropy estimator. It is found that the highest hedging error 
for options is based on a generalised jump-diffusion model with kernel bias. By maximising 
Shannon's entropy under moment constraints, they can calculate the value-at-risk of the hedging 
strategy and expect that there will be a shortfall in hedging error. However, it should be noted 
that the maximum entropy approach can be used despite the non-normality of the underlying 
return distribution to estimate the asymptotic distribution of the adjusted error. 

A dynamic portfolio selection model based on entropy has been proposed by MacLean et 
al. (2022). There must be a wealth surplus that exceeds or equals the shortfall. There must be a 
probability that the shortfall will drop below a certain level. Therefore, the model must function. 
An empirical analysis of asset pricing is based on asset pricing tests. Under the observed Sharpe 
ratio and the return to entropy ratio, the results of their study show that the dynamic portfolio 
using the proposed strategy shows a significant improvement. 

The MVSK model is extended by Gonçalves-Bradley et al. (2022) by analysing the 
skewness and kurtosis of the distribution. As part of their analysis, they also include an 
information entropy variable to measure asset information efficiency and diversity. Furthermore, 
they try to incorporate the high levels of uncertainty inherent in market returns into the models. 
An analysis examines the possibility of providing additional information to investors using a multi-
objective portfolio model. Entropy was primarily used to rank assets because they developed a 
model that optimised information and transferred entropy. Their approach was to filter the 
holdings by evaluating the value, momentum, and amount of data following the Fama & French 
model. It was then decided which index components were most critical. The findings appear 
inconclusive, but it is possible to enhance model performance by incorporating a fuzzy 
framework. 

Using a heterogeneous optimism and pessimism approach, Gong et al. (2022) study 
portfolio selection problems that include heterogeneous optimism, allowing uncertainty about 
future returns to be captured. When the market is in a turbulent phase, the entropy of equity 
market indexes decreases, so the indexes that earn will be more predictable and regular. In his 
study of elliptic and hyperbolic pseudo-entropies, Gupta (2022) investigates the concept of 
elliptic entropy. He uses adaptive indexes and oval and semi-entropic measures to capture 
investor attitudes. An optimisation problem involving coherent fuzzy numbers is used to use 
these risk measures. Taking the results of this study into account, he discusses how both linear 
and semi-entropy systems have advantages and disadvantages. It is argued that they are superior 
to other approaches in the literature by comparing them in different directions. 
 

IET and Risk Measurement 
Entropy is used in information theory to assess a message's degree of uncertainty and 

disorder (Shannon, 1948). Researchers such as Gulko (1999) and Dionisio et al. (2006) consider 
entropy a measure of information. Using this approach from statistical physics, Ausloos (1998) 
and Dacorogna (1999) quantify the disorder and uncertainty of dynamic systems. 
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Shannon's entropy (1948) measures how much information is present in a message 
instead of how much can be predicted. Statistical properties of a letter or word pair, triplets, or 
redundancy in language structure are examples of the latter. According to MacKay (2003), 
communication’s “informational value” depends on its degree of surprise, defined in terms of 
entropy. An event that is highly likely to occur is communicated with basic information if it 
occurs. Alternatively, the message is much more informative if an unlikely event occurs. Knowing 
that a particular number will not win a lottery provides incomplete information since any chosen 
number is improbable. In contrast, knowing that a specific number will win a lottery has high 
informational value since it conveys an outcome of very low probability. 

Several studies have found that stock prices are significantly modified by information 
about their fundamentals (Ross, 1989). As a result of the duality of their standard units, entropy 
is indexed with uncertainty and a lack of knowledge. A small quantity of data represents one 
possibility out of two, and a small amount of freedom represents one choice out of two. 
Shannon's memory is rehabilitated by entropy/information; independence/entropy considers 
fundamental non-determinism (Brissaud, 2005) on an entropy/information basis. 

A method for measuring the knowledge base of an economy was proposed by Dolfsma 
and Leydesdorff (2008) using probabilistic entropy. Uncertainty reduction can be calculated as 
negative entropy with mutual information in three dimensions (or more). Several dimensions of a 
knowledge economy are crucial to its success, such as the size of firms, the location of 
companies, and the type of technology. A comprehensive dataset of all Dutch companies 
registered with the Chambers of Commerce can be used to refine well-known empirical findings 
for the geographical dimension. 

The entropy model developed by Gibbs, Renyi, and Shannon has been used to study 
uncertainty in several ways. According to Dionisio et al. (2006), "entropy can be used to measure 
uncertainty in finance in several theoretical and empirical contexts". Entropy can be used both 
theoretically and empirically to measure uncertainty in finance. Physicists provide these 
operational tools because they provide diversity in uncertain situations. A variable is fully 
disordered when its entropy is maximised in a time series. 

Reassessing the recent finding that no established portfolio outperforms a naively 
diversified portfolio, Behr et al. (2013) developed a constrained minimum-variance portfolio 
strategy. Minimal-variance portfolios have higher out-of-sample variance than diversified zero-
variance portfolios. The portfolio strategy they use produces higher Sharpe ratios than 1/N. 
Sharpe ratios across our six empirical datasets increase by an average of 32.5%. 

Yu et al. (2014) evaluate portfolio selections incorporating different entropy measures 
using multiple criteria methods. To enhance the feasibility of models, they show that models 
using Yager entropy outperform other models. When models include entropy, allocating assets 
without considering entropy is more feasible. Fund managers must handle Shannon or Yager, 
entropy-based diversification models. 

Traditional risk and uncertainty measures are inadequate and ideal for identifying 
investment-related risks based on entropy. Mahmoud and Naoui (2017) stated that the power 
laws are advantageous in analysing uncertainty and asset value because they do not assume a 
normal distribution. The index reflects the firm's reality and needs to measure volatility, finance, 
and risk. Risk assessment and portfolio selection require a robust algorithm to apply entropy to 
risk assessment. 

Carroll et al. (2017) evaluated minimum-variance allocation strategies for performance 
benefits based on time-varying asset correlations. The importance of mean-variance optimisation 
to portfolio weights has been well documented (Best & Grauer, 1992). Therefore, several papers 
use the global minimum variance portfolio to optimise portfolios without specifying assumptions 
about expected returns (Becker et al., 2015; Bodnar et al., 2017). Economic fundamentals are 
affected by stock market uncertainty, according to (Ahn et al., 2019). As a result of uncertainty 
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shocks, industrial production declines for a short time, leading indicators to drop and rebound 
quickly, and systemic risk increases. 

The time-frequency domain is a dynamic, bidirectional channel of causal information 
transmission (Dhifaoui et al., 2022). Ripple and Bitcoin transmit information bidirectionally; an 
investigation of information sharing between cryptocurrencies during the COVID-19 crisis was 
conducted by Assaf et al. (2022). According to Ünal (2022), COVID-19 causalities spread across 70 
countries. Epidemiologists will benefit from his results as they portray COVID-19 spreading 
structure among countries. Transfer entropy (TE) outperforms traditional VAR methods based on 
the estimation of approximate entropy estimates during the COVID-19 era (Caferra, 2022). 
 

I. Result and Discussion 

This study critically examines several models developed after the Capital Asset Pricing 
Model (CAPM) in the 1970s, which are based on a relatively narrow hypothesis assuming financial 
markets operate in a Gaussian universe and are inherently efficient (Markowitz, 1952; Fama, 1970; 
Sharpe, 1964). However, empirical challenges to these models have surfaced over time, revealing 
their limitations in describing market behaviour due to their overly restrictive assumptions. As a 
result, alternative methods, such as power laws, have been considered to quantify better 
uncertainty surrounding future price movements. 

According to Mandelbrot (1967, 1971) and Mandelbrot and Hudson (2004), these models 
cannot describe the reality of market behaviour since their hypotheses are too restrictive. Due to 
the lack of information captured by these models and the inability to quantify the uncertainty 
surrounding future price movements, it is necessary to refer to power laws. Thus, several 
explanations, including the market entropy approach, are interesting to consider, and it is worth 
considering several of them. As a result of these findings, research was directed towards 
reimagining explanations for market behaviour in conjunction with IET's research. 

As a result, of a thorough search of the economic and financial literature, several works 
show entropy as a fundamental property of economics and finance. These works include those of 
Gulko (1999), who established an entropy theory. Researchers have turned to novel explanations 
of market behaviour. Financial-economic literature reviews reveal several works (Gulko, 1999; 
Mandelbrot, 1971). Although Fama (1970) argues that not all markets are efficient since not all 
markets enjoy pure and complete competition and frictionless transactions. 

Financial instruments’ prices fluctuate from one period to another in a manner known as 
a “random walk”. In so far as it implies that future price movements cannot be predicted, this 
idea is based on the work of Mandelbrot (1971), was highlighted by Samuelson (1973), and 
conditions the vision of efficiency testable degrees (strong, semi-strong, and weak). 

Generally, entropy can be considered a measure of risk in portfolio returns as it is derived 
from the theory of information (Shannon, 1948). It has been shown that the amount of 
uncertainty/randomness in a probability distribution can be quantified by incorporating all higher-
order moments (Cover & Thomas, 2006) and by considering the entire likelihood distribution 
when estimating the likelihood of an investment event. 

Several studies support the claim that transfer entropy is more effective than other 
methods for evaluating causality. First, transfer entropy is a quantitative causality measure that 
detects nonlinear causal relationships between variables. Thirdly, (TE) may provide better results 
for identifying the relationship than traditional VAR methods (Caferra, 2022). 

Several types of causality planes have been proposed in recent years that can be used to 
analyse one-time non-linear complex systems, such as the complexity-entropy causality plane, 
the Shannon-Fisher information plane, and the Renyi-Tsalli entropy plane. These planes are 
widely used in numerous fields. Despite this, applying these definitions to data sets containing 
two or more remarkable dimensions is not done daily. According to Wang and Shang (2021), 
dispersion entropy performs better when analysing complex systems. As part of the investor's 
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request, the investor may be able to provide further information about the proposed framework 
using the Renyi effective transfer entropy approach, which is based on CEEMDAN. 

A market price is considered efficient if it minimises investors' uncertainty about future 
price movement under the efficient market hypothesis. There is a strong case for the entropic 
market hypothesis that the entropy of consensus beliefs about future price changes is an 
adequate measure of collective uncertainty in the marketplace. As a result, entropy is maximised 
when the market becomes more efficient from an information perspective. Therefore, entropy 
provides a mechanism to interpret Gulko's (1999) work from an information theory perspective. 

According to the entropy hypothesis of markets, a market with an informationally 
efficient price level should be characterised by market beliefs with maximum entropy. To identify 
Financial Market features due to non-linear dependencies, Barbi and Prataviera (2019) suggest 
using mutual information network analysis to determine the characteristics of the markets. 

BPA uncertainty is measured by some scholars using entropy, a measure of randomness. 
Deng's (2016) entropy can effectively measure fundamental BPA uncertainty in several fields, like 
fuzzy multicriteria decision-making. It can be applied in many areas, such as BPA uncertainty 
assessment. A generalised Jenson-Shannon divergence approach based on belief functions was 
developed by Xiao (2020); its successful application to medical diagnostics has provided evidence 
of its validity and applicability. 

Owing to the lack of consideration for the relationship between focal elements in Xiao 
(2020), divergence measurement for belief functions was proposed to measure BPA uncertainty. 
The work measured BPA uncertainty from the perspective of complex evidence distances. 

Shannon entropy undoubtedly provides a novel perspective on uncertainty in probability 
theory. VarEvidence theory has various entropies, the primary uncertainty associated with basic 
probability assignment (BPA). Despite this, D spitfire is controversial regarding the measurement 
of uncertainty from a physics perspective and the basis of how these entropies are computed. As 
a result, the method for measuring BPA uncertainty is still open. 

In probability theory, Shannon entropy provides a novel perspective for measuring 
uncertainty. In evidence theory, various entropies exist for measuring the primary tension of 
basic probability assignment (BPA). However, these entropies are controversial from the 
standpoint of uncertainty measurement and physics requirements. Therefore, the process for 
measuring BPA uncertainty currently remains an open issue in the literature. 

It seems to us that the identification of entropy with a measure of knowledge (if we 
measure ignorance, then we measure ability) or of belief is based on a double title, formal 
between the mathematical formulas of Shannon's and Boltzmann's entropies and epistemic 
insofar as Shannon's insofar as the entropy of Shannon is comparable to information (in the 
technical sense that he gives it in his theory of communication). In contrast, as previously shown, 
Boltzmann's entropy can lead to an epistemic interpretation. 

Our findings highlight the potential of Information Entropy Theory as a tool for measuring 
risk and valuing assets. With IET, we offer new opportunities to improve financial decision-
making and understand market dynamics by addressing the limitations of traditional models and 
providing a more comprehensive perspective on market behaviour and uncertainty. 
 

I. Conclusion and Remarks 

This study examines empirical research on market efficiency, portfolio selection, and 
asset valuation to formulate a comprehensive theoretical framework of Information Entropy 
Theory (IET). Our goal is to determine how entropy can address the limitations of traditional 
models of financial asset valuation, such as the market efficiency hypothesis, the Capital Asset 
Pricing Model (CAPM), and the Black-Scholes option pricing model. We found several interesting 
properties of IET that facilitate portfolio selection and boost asset valuation. Specifically, this is 
the case when models are uncertain, loss functions are nonlinear, and the risk factors are not 
normally distributed. 
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We have conducted a literature survey that spans an extensive period, from 1948 to 2022, 
focusing on well-known asset pricing models and prominent IET research. Among portfolio 
managers, we find that they are deeply concerned about managing the valuations of their 
investments to maximise returns and minimise risk for their investors. Market information 
efficiency has been extensively studied to better understand financial markets' behaviour. 

In conditions where return distributions deviate from Gaussian assumptions, the entropy-
based portfolio selection model emerges as a preferred alternative to the standard model. It is 
important to note that this model provides richer information about the asset and its distribution 
probability. This method emphasises the diversification principle and relies more heavily on price 
information to make decisions. As a result, the entropic interpretation of the no-arbitrage 
principle, which allows for extreme variations, makes it more appropriate for valuing derivative 
instruments than the Gaussian distribution because it accounts for extreme variations. 

Through its successful use, the practical reliability and efficiency of IET become evident. It 
is more appropriate to use entropy instead of variance when dealing with non-Gaussian return 
distributions, and power laws are more suitable for analysing uncertainty and asset values 
because they do not rely on standard distribution assumptions. Considering Markowitz's work in 
light of a better understanding of uncertainty, this revaluation of Markowitz's work gives rise to a 
mean-entropy approach as an alternative perspective to the traditional mean-variance approach 
to asset selection. 

Future research could build on existing literature by looking at the relationship between 
IET and the scores related to the environment, social issues, and governance (ESG). Furthermore, 
by revisiting classical valuation models based on entropy theory, we could gain valuable insight 
into the inefficiencies of financial markets when it comes to providing information to investors. 
From a perspective of entropy, this is the result of an analysis. It should be noted that the 
entropy approach emphasises decomposing total risk into systematic and unsystematic risks 
through statistical methods when measuring the risk associated with financial assets. 

As a result, the findings of this study illustrate the importance of Information Entropy 
Theory as a tool for overcoming the limitations of traditional asset valuation models. Portfolio 
managers and investors can benefit from incorporating entropy-based perspectives when 
managing uncertain environments, as investors can make more informed decisions in pursuit of 
optimal returns while mitigating risk by incorporating entropy-based perspectives. Research in 
this area is expected to enrich our understanding of financial markets in the future and refine the 
tools used to measure and value assets and risk in the future. 
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